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Abstract
The dynamics of a single domain wall in finite glass-coated microwires is reported in the
low-field regime below the switching field. The power law of the single domain wall
propagating over a large distance is confirmed. Three regions are determined for the
propagating domain wall. Below some critical field, H0, the domain wall is pinned at the wire’s
end. Just above that critical field, the wall moves in the adiabatic regime, interacting with the
defects during its propagation, with an average velocity of v = S′(H − H0)

β . At high field, the
domain wall propagates in the viscous regime and its average velocity is proportional to the
applied magnetic field, H . An analysis of the temperature dependence of the scaling factor β is
further reported. It is also shown that the domain wall mobility parameter S′ is
field-independent and is proportional to the domain wall mobility S in the viscous regime.

1. Introduction

Magnetic domain walls in small magnetic devices are used
to encode information for storage, for sensing in some
magnetic sensors or to perform logic operations [1]. A full
understanding of the magnetization reversal process in small
structured systems is the key for future applications in the
above-mentioned devices (hybrid integrated circuits, race-track
memory and sensors) [2, 3]. Although, the domain wall
dynamics has been extensively explored theoretically, there is a
lack of experimental work, with some provided only in the last
few years [1, 3] and some of it sometimes controversial [5, 6].
Understanding and controlling the domain wall propagation
through the real material containing the defects can improve
both the dynamic behaviour of the wall through these structures
and its application functionality.

We present the study of the domain wall dynamics
on glass-coated microwires in the low-field regime, where
a universal power law is observed. Magnetic glass-
coated microwires prepared by the Taylor–Ulitovski method
exhibit unique domain structure resulting from shape and
magnetoelastic anisotropy [4–6]. Particularly, that of positive
magnetostriction Fe based microwires consists of a large single
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domain with magnetization oriented axially, surrounded by a
radially oriented domain structure. Moreover, small closure
structures appear at the ends of the wire to reduce the stray
field energy. As a result, the axial magnetization process runs
through the depinning and propagation of a single domain wall
from one closure domain at one end. Although having almost
bulk structure, glass-coated microwires show a unique nearly
ideal magnetization reversal process, characterized by its fast
velocity or high mobility [7, 8], the investigation of which
reveals much of interest to help comprehend what is occurring
in smaller nanostructures. Particularly, a very fast domain
wall has been observed in microwires [9] that can reach even
supersonic velocities 20 000 m s−1 [10]. One of the parameters
that are responsible for the fast domain wall propagation is a
negative critical propagation field [9] that would lead to the
virtual propagation in a negative field [8]. In order to reach a
deeper understanding of the reversal process, a new experiment
related to domain wall dynamics in the low-field regime has
been carried out.

The domain wall dynamics is governed by a linear
dependence of the domain wall velocity v on the applied field
H [11]:

v = S(H − H0), (1)

where S is the domain wall mobility and H0 is the critical
propagation field, which should be overcome to observe
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Figure 1. Schematic diagram showing the experimental setup for the
domain wall dynamics measurements.

the domain wall propagation. Such linear dependence
has been experimentally confirmed many times in different
materials [12–14]. However, recent measurements of the single
domain wall propagation in glass-coated microwires [7, 15]
show unusual dynamics where extrapolation of linear
behaviour leads to negative critical propagation field, H0. To
obtain further information on the process, measurements of
the low-field domain wall propagation dynamics have been
performed.

2. Experimental details

A classical Sixtus and Tonks [16] like experiment is used
to determine the domain wall dynamics on a Fe77.5Si7.5B15

amorphous microwire, 11 μm in diameter, coated by a 9 μm
thick Pyrex layer. The system consists of four coaxial coils
(figure 1). The primary coil, 10 cm long, generating the
exciting field was fed by 30 Hz frequency AC square current
creating a homogeneous field along the wire, 10.5 cm long,
that can be taken as static during wall propagation. A small
nucleation coil located at the very end of the wire was used
to generate an additional local magnetic field of the same
frequency, in phase with the field in the primary coil and higher
than the switching field, that is, high enough to overcome the
pinning field of the closure domain. Two secondary coils,
symmetrically disposed at the centre of the primary coils and
separated by L = 6 cm, are connected in series opposition
so, two sharp opposite peaks are picked up at an oscilloscope
upon passing the propagating wall. The coils system allows us
to identify the propagating wall direction the velocity of which
is calculated as v = L/t , where t is the time between two
maxima in the emf recorded peaks. The system is placed inside
a specially designed cryostat system, the details of which can
be found elsewhere [7, 8], enabling the measurement in the
temperature range from 77 to 380 K.

The local field generated by the nucleation coil (1 cm
long) fully reverses magnetization within a small region at
one end of the wire, which quickly enlarges the action of the
homogeneous field created by the solenoid. The amplitude of
the nucleation field was kept just above the critical propagation
field H0 (given by equation1) small enough not to disturb the

Figure 2. Domain wall velocity v as a function of magnetic field
amplitude H .

(This figure is in colour only in the electronic version)

experiment, but high enough to ensure the initialization of
propagation.

3. Results and discussion

In previous works, the expected linear behaviour according
to equation (2) has been measured under homogeneous fields
stronger than the so-called switching field. Here, we also pay
particular attention to the case of propagation for applied field
below the switching field.

Below the static switching field of the closure domain
wall, a characteristic deviation from the linearity is found (see
figure 2). Alternatively, the low-field domain wall dynamics
can be described by a power law:

v = S′(H − H ′
0)

β (2)

where S′ is an effective domain wall mobility parameter, H ′
0 is

the dynamic coercive field and β is the power exponent. Such
a power law results from the interaction of the propagating
wall with the defects of the material, different sources of
which in the actual amorphous microwire have been described
before [8, 17]. As was shown in [7] and [17], the domain
wall potential E consists of two terms: the long-range
magnetoelastic one and the short-range terms arising from the
pinning of the domain wall on the defects in the amorphous
medium. The pinning centres are randomly distributed along
the amorphous microwire and the pinning field. Therefore,
the domain wall potential fluctuates as the domain wall moves
through the material, and the restoring force α acting on the
domain wall due to the gradient of the internal potential is
given by α = dE/dx . When the domain wall passes the region
with a local maximum of the restoring force α, a local jump
occurs until the wall reaches a new site with the restoring force
α greater than the force 2MS H acting on the domain wall.

Therefore, the domain wall motion in the low-field limit
is adiabatic. Under the action of a small force 2MS H , the
domain wall moves slowly close to some local minimum in
its potential that arises from the elastic interactions within
the domain wall and from the impurities pinning. At some
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Figure 3. The emf recorded waveform measured in the viscous and
adiabatic regime (at very low domain wall velocity) at 273 K. The
inset shows how the peak is separated into two peaks when the
pinning is so strong that the domain wall stops inside the pick-up coil
(below H ′

0).

point, the local minimum disappears and the domain wall
moves forward rapidly to another local minimum. Such motion
is characterized by intermittent jumps from defect to defect.
Hence, the local domain wall dynamics description is governed
by the generalized equation (1):

v = S(H − (Hdm + Hp)), (3)

where Hdm includes all long-range contributions (such
as the geometry dependent demagnetizing field and the
magnetoelastic contribution) and is separated from a random
component, Hp, that includes all short-range counterfield
contributions. The pinning field, Hp, is assumed to exhibit
statistical properties governed by details of the local pinning
potentials that inhibit domain wall motion. In the first
approximation, the distribution of the pinning field takes
Gaussian shape with the width of R. Then the magnetization
change during the domain wall jump is given by the power
law [18]:

�M ∼ ((R − Rc)/Rc)
β (4)

where Rc is a critical distribution width below which the small
intermittent domain wall jumps do not appear. As a result, the
domain wall moves with average velocity (v = �M/�t) given
by equation (2) [18–21].

The different shape of the induced peaks at the pick-up
coils (obtained by a ‘single shot’ acquisition) also confirms
the presence of the two regimes (figure 3). The perfect
symmetric shape measured in the viscous regime confirms the
planar shape of the domain wall, which propagates at constant
velocity. The emf waveform measured in the adiabatic regime
(at very low domain wall velocity −50 m s−1) suggests the
fluctuation of the domain wall velocity during its motion across
the randomly distributed defects. When the applied field is very
close to the critical field H ′

0, the domain wall can even stop
in the centre of the pick-up coil (see inset of figure 3). Then
one can observe two peaks that correspond to two Barkhaussen
jumps, similarly to the experiments in [22]. The domain wall
can depin from the defect due to the thermal activation [23, 24].

Figure 4. Domain wall velocity as a function of magnetic field
amplitude for a range of indicated measuring temperatures. Full lines
represent the linear fit.

Figure 5. Temperature dependence of the scaling exponent β (up).
Temperature dependence of the switching field Hsw and its
contributions taken from [5] and theoretically estimated Hmax

according to equation (6) (down).

In this case it does not propagate along the entire wire (6 cm)
since it finally remains pinned somewhere in the middle.

The observed nonlinear dynamics at low fields in figure 2
is not surprising. It was first calculated by Nakatani et al
for thick sub-micron strip line [25], and assumed theoretically
from the measurement of Yang and Erskine [26]. Here, we
confirm the scaling behaviour of the single domain wall during
its propagation over large distances, which has been taken as
a manifestation of the nonlinear dynamics and criticality in
complex systems [27].

The power law is universal and valid on a wide range of
scales where crackling noise is detected [28–33]. The power
law at low fields is here confirmed also in a wide temperature
range, as proved in the log–log plot in figure 4. However, the
power exponent is temperature dependent (see figure 5) and
increases from β = 0.32 at 77 K up to β = 0.48 at 373 K. This
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evolution can be treated in terms of the change of the domain
wall shape. We can assume two contributions to the domain
wall potential in amorphous microwires [7, 17], firstly, the
long-range magnetoelastic one that changes with temperature
due to the different thermal expansion coefficient of metallic
nucleus and glass coating [34, 35]. A short-range contribution
comes from the interaction of the domain wall with the defects
on the atomic level. Due to the interaction energy with local
spontaneous magnetization these mobile defects try to align
into the most favourable orientation. Amorphous alloys have a
low packing density because of the steric misfit between atoms
of different atomic radii. Therefore, even at low temperature
small rearrangements of atoms are possible by jumps of atoms
into the neighbouring free volumes. The total interaction
energy of the domain wall with the mobile defects, also called
stabilization energy, can be expressed as [36]:

Ep = 2

15

ρ0

kT
ε2

p

[
−2δ0 + x2

δ0

]
F(t, T ), (5)

where ρ0 is the density of the mobile defects, εp corresponds
to the interaction energy of the mobile defects with the local
spontaneous magnetization, k is a Boltzmann constant, T is
the temperature, δ0 is the domain wall width, x is the domain
wall position and F(T, t) is a relaxation function: F(T, t) =
(1 − e(−t/τ)), where t is the time of measurement and τ is
the relaxation time, given by the Arrhenius equation: τ =
τ0eQ/kT , τ0 being a pre-exponential factor and Q denoting
the activation energy of the mobile defects. It was shown
earlier [7, 8, 17] that pinning of the domain wall on the mobile
defects becomes an important mechanism especially at low
temperatures. When the temperature decreases, the mobile
defects lose their mobility, increase the local anisotropy and
the pinning of the domain wall on such defects is stronger.

Hence, one possible explanation of the temperature
dependence of β arises from the domain wall shape change
due to pinning. At high temperatures, the long-range
magnetoelastic contribution prevails, the domain wall pinning
on the local defects is small (see figure 5—contributions to the
switching field) and the domain wall prefers to keep a planar
(rigid) shape in order to decrease the stray fields. According
to the random field theory [19–21], the coefficient β → 1/2.
At low temperature, the pinning forces from the randomly
distributed defects are much stronger than elastic forces and
the interface breaks up [20]. The domain wall motion at
any point depends on its pinning on the local defects and the
domain wall takes a flexible shape. This results in the decrease
of the power exponent β down to 0.32 at 77 K. This value
corresponds well with the random field model [20, 21]. These
results are also consistent with the temperature dependence of
the switching field and its contributions (see also figure 5) [7].
Moreover, such a temperature dependence of β does not occur
in microwires, where the pinning contribution to the hysteresis
mechanism is negligible [37]. Unfortunately, there is no direct
experimental evidence for the domain wall shape change. The
propagating domain wall in microwires is shielded by the radial
domain structure so the direct observation of the domain wall
is impossible.

Table 1. Fitted parameters of the domain wall dynamics to
equations (1) and (2).

T
(K) S′

H ′
0

(A m−1) β

Ht

(A m−1)
S
(m2 A−1 s−1)

H0

(A m−1)

77 47.9 17.1 0.318 216 0.51 −317
123 50.7 12.4 0.335 154 0.66 −251
173 56.3 10.5 0.329 124 0.84 −197
223 50.4 7.8 0.371 82 0.97 −176
273 40.4 5.4 0.431 103 1.14 −151
295 35.1 13.0 0.449 110 1.07 −147
323 35.2 12.4 0.465 113 1.15 −150
373 35.3 11.3 0.477 124 1.36 −123

Another important parameter is the effective domain wall
mobility parameter S′ given in equation (2). Its role is not
clear and there is also speculation that the nonlinear domain
wall dynamics can be treated in terms of the field dependence
of the mobility parameter S′, keeping the power exponent
β = 1 [19]. Anyway, according to equations (2) and (4), v ∼
((H − H ′

0)/H ′
0)

β . Then, the mobility parameter S′ is equal to
S∗/(H ′

0)
β . The new parameter S∗ is proportional to the domain

wall mobility in the viscous regime S given by equation (1),
where the proportionality constant, Hmax, has the dimensions
of magnetic field (S∗ = S.Hmax). As observed in figure 5,
Hmax takes similar values to the switching field obtained in [5].
In addition, it has the same temperature dependence, which
points to the fact that both fields are governed by the same
mechanism. Finally, we have found the relation between the
mobility parameter S′ given by equation (2) and domain wall
mobility in the viscous regime S as:

S′ = S.Hmax/H β

0 , (6)

which supports the fact that the domain wall mobility can be
taken as a constant and it is not field dependent. At least in the
adiabatic and viscous regime.

At higher fields, larger than the fluctuations of the wall
potential, equation (2) transforms into equation (1). In
this viscous regime, above Ht , when the wall propagates at
constant velocity it is not locally pinned so it propagates in a
single continuous step without interaction with local defects.
Accordingly, equation (2) can be modified as:

v = v(Ht) + S(H − Ht). (7)

An analytical description in the whole range is:

v =

⎧⎪⎨
⎪⎩

0 for H < H ′
0

(S.Hmax/H ′β
0 )(H − H ′

0)
β for H ′

0 < H < Ht

v(Ht) + S(H − Ht) for Ht < H
(8)

where the fitted parameters are collected in table 1.

4. Conclusions

In conclusion, the experimental evidence of the theoretically
predicted power law dependence of the domain wall velocity
on low applied magnetic field is reported here for the case
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where the domain wall moves slowly, interacting with the
defects presented in the materials. We offer one possible
explanation of the temperature dependence of the power
exponent β in terms of the domain wall shape change. The
power exponent β approaches values of 1/2 in the high
temperature regime, indicating the rigid domain wall. At low
temperatures, the domain wall pinning on the defect prevails
and the domain wall becomes flexible, resulting in the decrease
of β . We also show that the mobility parameter is proportional
to the domain wall mobility for the viscous regime and to
the field Hmax at which the domain wall dynamics changes
from adiabatic to viscous. This also shows that the nonlinear
dynamics cannot be treated in terms of the field dependence of
the domain wall mobility.
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